6 research outputs found

    A conceptual framework for the adoption of big data analytics by e-commerce startups: a case-based approach

    Get PDF
    E-commerce start-ups have ventured into emerging economies and are growing at a significantly faster pace. Big data has acted like a catalyst in their growth story. Big data analytics (BDA) has attracted e-commerce firms to invest in the tools and gain cutting edge over their competitors. The process of adoption of these BDA tools by e-commerce start-ups has been an area of interest as successful adoption would lead to better results. The present study aims to develop an interpretive structural model (ISM) which would act as a framework for efficient implementation of BDA. The study uses hybrid multi criteria decision making processes to develop the framework and test the same using a real-life case study. Systematic review of literature and discussion with experts resulted in exploring 11 enablers of adoption of BDA tools. Primary data collection was done from industry experts to develop an ISM framework and fuzzy MICMAC analysis is used to categorize the enablers of the adoption process. The framework is then tested by using a case study. Thematic clustering is performed to develop a simple ISM framework followed by fuzzy analytical network process (ANP) to discuss the association and ranking of enablers. The results indicate that access to relevant data forms the base of the framework and would act as the strongest enabler in the adoption process while the company rates technical skillset of employees as the most important enabler. It was also found that there is a positive correlation between the ranking of enablers emerging out of ISM and ANP. The framework helps in simplifying the strategies any e-commerce company would follow to adopt BDA in future. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature

    How to Understand Connections Based on Big Data: From Cliques to Flexible Granules

    No full text
    One of the main objectives of science and engineering is to predict the future state of the world -- and to come up with actions which will lead to the most favorable outcome. To be able to do that, we need to have a quantitative model describing how the values of the desired quantities change -- and for that, we need to know which factors influence this change. Usually, these factors are selected by using traditional statistical techniques, but with the current drastic increase in the amount of available data -- known as the advent of {\it big data} -- the traditional techniques are no longer feasible. A successful semi-heuristic method has been proposed to detect true connections in the presence of big data. However, this method has its limitations. The first limitation is that this method is heuristic -- its main justifications are common sense and the fact that in several practical problems, this method was reasonably successful. The second limitation is that this heuristic method is based on using crisp granules (clusters), while in reality, the corresponding granules are flexible ( fuzzy ). In this paper, we explain how the known semi-heuristic method can be justified in statistical terms, and we also show how the ideas behind this justification enable us to improve the known method by taking granule flexibility into account

    The behavior of animals around twilight with emphasis on coral reef communities

    No full text
    corecore